Restoration logo
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • NEWS
  • PRODUCTS
  • EDUCATION
  • TOPICS
  • BUSINESS
  • BUYER'S GUIDE
  • VIDEOS
  • INFOCENTER
  • THE EXPERIENCE
  • EMAG
  • SIGN UP
cart
facebook twitter linkedin youtube
  • PRODUCTS
  • New Products & Technologies
  • Submit Your Product
  • Interactive Product Spotlights
  • EDUCATION
  • KnowHow.
  • Podcasts
  • Trade Shows & Expos
  • Training & Certification
  • Webinars
  • Whitepapers
  • TOPICS
  • Water Damage
  • Fire & Smoke Damage
  • Mold
  • Contamination
  • Odor
  • Contents
  • Architecture
  • Catastrophe
  • Cleaning
  • BUSINESS
  • Managing Your Business
  • Insurance/Legal Matters
  • VIDEOS
  • Ask Annissa
  • Ask the Expert
  • Ironclad Marketing Minute
  • TradeTalks
  • Video Channel
  • INFOCENTER
  • Mold and Mycotoxins
  • THE EXPERIENCE
  • Conference & Exhibition
  • Convention & Trade Show
  • R&R Special Issue
  • EMAG
  • eMagazine
  • Archive Issues
  • Contact
  • Advertise
Restoration logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Restoration logo
  • NEWS
  • PRODUCTS
    • New Products & Technologies
    • Submit Your Product
    • Interactive Product Spotlights
  • EDUCATION
    • KnowHow.
    • Podcasts
    • Trade Shows & Expos
    • Training & Certification
    • Webinars
    • Whitepapers
  • TOPICS
    • Water Damage
    • Fire & Smoke Damage
    • Mold
    • Contamination
    • Odor
    • Contents
    • Architecture
    • Catastrophe
    • Cleaning
  • BUSINESS
    • Managing Your Business
    • Insurance/Legal Matters
  • BUYER'S GUIDE
  • VIDEOS
    • Ask Annissa
    • Ask the Expert
    • Ironclad Marketing Minute
    • TradeTalks
    • Video Channel
  • INFOCENTER
    • Mold and Mycotoxins
  • THE EXPERIENCE
    • Conference & Exhibition
    • Convention & Trade Show
    • R&R Special Issue
  • EMAG
    • eMagazine
    • Archive Issues
    • Contact
    • Advertise
  • SIGN UP

Government Agencies Warm Up to Heat Treatment: New Applications for an Old Process

By Sean P. Abbott Ph.D.
March 1, 2007


Government agencies, schools and other institutions have recently looked towards heat treatment as an effective solution to some common biological contamination problems. The new technology is being considered as an appropriate non-chemical approach to problems in situations where legislation requires or business climate is leaning towards environmentally responsible solutions to contamination issues.

Most of us are familiar with the term pasteurization. Pasteurization is a process to eliminate human pathogens and reduce the overall concentration of microorganisms in food and industrial processing (Stetzenbach and Yates 2003). Louis Pasteur developed heat preservation processes between 1854 and 1864 when he determined that bacteria were causing wine to spoil. Through experimentation, he discovered that when heated to a certain threshold and held for specific period of time, the bacteria could be killed without damaging the wine. Later applications for pasteurization included other liquids such as milk and fruit juices, and heat has become an important tool for reducing biological contamination and an important method of preservation throughout the food industry. Pasteurization is distinct from sterilization, which uses extreme physical or chemical means to eliminate all biological agents (for example, autoclave treatments of surgical instruments), but may adversely affect the food or other materials being sterilized (Black 1999, Doyle et al. 2001).

In recent years, indoor environmental technicians have honed the engineered application of dry heat to a whole building, a portion of the structure, or its contents, with the purpose of killing targeted organisms. The principle of this process, often termed “structural pasteurization” or “thermal disinfection,” is similar to pasteurization in that it has demonstrated that certain microorganisms are susceptible to heat and that overall microbial levels could be significantly reduced. Each organism has a specific thermal death point, and many of those inhabiting built structures fall within the range of efficacy for this process. The thermal death point for organisms, including species of insects, arthropods, fungi, bacteria and viruses, is a function of temperature and duration coupled with biomass and environmental factors. Death rates at high temperatures for short durations may be equivalent to lower temperatures for longer times.

The application of thermal disinfection processes to biological problems in structures has proved successful in a number of situations. In all cases where heat treatments are employed, the process is used in conjunction with traditional remediation methods that rely on physical removal of contaminated building materials and control of aerosols through the use of HEPA filters.

Insect Control in Schools

With the increasing public concern regarding exposure of children to chemical agents and the implementation of Integrated Pest Management (IPM) programs in California schools, the use of heat treatments for control of insects has recently been expanded. Insect pest control was one of the first applications of heat treatments to structures (Forbes and Ebeling 1987, Ebeling 1994), and has since found wide acceptance in the pest control industry. Effectively employing dry heat as a means of eradicating insects was pioneered by Dr. Walter Ebeling and Dr. Mike Linford at UCLA in the 1970s. The thermal death points were documented for a number of common pests and laboratory experiments were performed to confirm the efficacy of heat against all stages in the life cycle of the insects including adults, larvae and eggs.

Inside temperatures are raised to 140-150 F and structural timbers reach 120 F, maintained for one hour. Currently, heat treatment is one of only two methods approved by the State Pest Control Board of California for whole-building eradication of drywood termites (CA Dept. Consumer Affairs 1998). Other effective applications of heat treatment have been noted for the control of cockroaches in commercial buildings and bedbugs in hotels. In cases of building water intrusion, thermal disinfection may also aid in reducing the spread of mold and other fungi by controlling the insect and other arthropod vectors of dispersal.

Flood Restoration and Remediation of Sewage-Impacted Areas with Associated Bacterial CFlood Restoration and Remediation of Sewage-Impacted Areas with Associated Bacterial Contaminationontamination

A private university for photography, film and graphic arts located in Ventura County, Calif., experienced severe flooding from rainstorms in early 2005. During this period, several of the buildings on campus were impacted with water levels reaching two to three feet. A local environmental consultant was called in to determine the extent of contamination by sewage-related bacteria (Escherichia coli and other coliforms), a concern with all the flooding that had occurred through agricultural lands and widespread backup of the County sewer system. The consultant’s initial findings indicated the presence of E. coli, generally considered the most reliable indicator of contamination by human fecal waste. The university needed the facility to be dried rapidly to allow early re-occupancy of the school and prevent the growth of mold, in addition to the need to eliminate the health hazards associated with the presence of sewage bacteria.

Heat treatment was used to accomplish this objective in conjunction with physical sewage clean-up methods. Thermal death points for E. coli have been documented over a range of temperatures and durations, such as 140 F (60 C) for 45 minutes (Padhye and Doyle 1992). Temperatures at this site were elevated to 145 F to accomplish rapid drying and exceed the thermal death point of E. coli. Air circulation was increased with additional fan units and HEPA-filtered air scrubbers. Air scrubbers were used continuously to capture aerosol generated by the thermal movement and air exchange. Post-drying samples demonstrated non-detection of E. coli in all areas inspected. The university was open for business exactly one week after the flooding shut down all operations. Given the concerns expressed by facility management over use of antimicrobials, the quick and effective resolution to a potential catastrophe by using the non-chemical approach offered by heat technology demonstrated the appropriateness of the process for this application.

Hantavirus Disinfection, Yosemite National Park

The National Park Service identified approximately 44 buildings scattered throughout Yosemite National Park that required management for potential rodent infestation in order to manage the risks of park personnel contracting the potentially lethal Hantavirus Pulmonary Syndrome (HPS). The usual vector for the virus is the deer mouse (Peromyscus species), a small rodent common in many natural and rural areas throughout North America.

The difficulties in managing rodent infestation in park buildings are numerable. Rodent activity is easily identified in occupied areas of the structures, but inaccessible areas such as attics, crawlspaces, and wall cavities are also frequently inhabited by the rodents and the presence of rodent excreta and contaminated nesting material is expected in these areas.

A study by the World Health Organization determined that Hantavirus can be inactivated by a variety of methods including chloroform, ether-alcohol, acid below pH 5.0, phenol, sodium hypochlorite, E60 cobalt irradiation and heat at 60 C for 30 minutes (Lee et al. 1999). Given the restrictions on the use of chemicals within National Parks, heat treatment was selected for use in these buildings. The thermal disinfection process monitored the elevation of temperatures in the structures to 150 F (65.6 C) for two hours, to meet or exceed the lethal temperature and time parameters established by the Center for Disease Control (CDC). This was combined with traditional physical filtration processes including cleaning using HEPA vacuums with workers outfitted in appropriate PPE and use of HEPA air filtration devices during the heating and air exchange process.

An additional benefit to using the heat process was the exclusion of rodents. Because of the gradual increase in temperature during heating, any rodents present in the building will be driven from the structure while it is easy to exit. Following the treatment, rodent exclusion techniques were applied to prevent re-entry. Other organisms such as insects, mites, fungi and bacteria were also potentially killed during the process, adding to the overall building hygiene by effectively reducing biological contaminants within these buildings.

Conclusion

The application of heat treatments of buildings and the process of thermal disinfection of the indoor environment clearly has merit in control of insect pests, rapid drying of structures, elimination of viable bacteria in sewage contamination situations and reduction of hazards of exposure to Hantavirus in buildings with rodent infestations. The process also has potential for more widespread control of microbiological organisms and may provide an additional means of combating some of the adverse health effects associated with exposure to biological material in residential and commercial buildings.

Current efficacy studies are ongoing to address the potential application of heat treatment as an aid in situations where mold and bacterial contamination has occurred due to water intrusion events. The potential for heat denaturation of proteins for reduction of some allergen levels in residential buildings is also being investigated. If you liked this feature circle 137 on page 51.

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Sean P. Abbott, Ph.D. is the analytical director and president of Natural Link Mold Lab, Inc. The laboratory specializes in analysis of microbiological samples from contaminated indoor environments and performs testing of products and processes for antimicrobial efficacy. Dr. Abbott currently serves as subcommittee chair for the IICRC S520 Committee, chair of the Basic Science Committee for the Indoor Environmental Institute, and is a director for a local chapter of the American Indoor Air Quality Council. You can contact him via the Web site www.naturallinkmoldlab.com or by phone at (866) 252-MOLD.

Recommended Content

JOIN TODAY
To unlock your recommendations.

Already have an account? Sign In

  • mold remediation

    Fighting Mold and Bacteria Damage

    Successful mold remediation can be multidisciplinary,...
    Cleaning and Sanitation
    By: Josh Woolen
  • certifications and licenses for restoration professionals

    Certifications and Licenses Every Restoration Company Needs

    Restoration companies need to make sure they have the...
    Restoration Training/Education
    By: Sharon Elzarat
  • a wall covered in moss and fungus

    Zero Tolerance for Toxic Molds: Essential Steps for Successful Remediation

    Understanding the importance of zero tolerance for toxic...
    Mold Remediation
    By: Michael A. Pinto CSP, SMS, CMP, RTPE, FLS, ERS and Kendra Seymour
You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • eNewsletter
  • Online Registration
  • Subscription Customer Service
  • Manage My Preferences

Ask The Expert - From the Unknown to Making a Difference: AJ and Becky's Journey

Ask The Expert - From the Unknown to Making a Difference: AJ and Becky's Journey

Ask The Expert - Transforming Business Operations: Insights from Leighton Healey

Ask The Expert - Transforming Business Operations: Insights from Leighton Healey

Ask The Expert: Unlocking Efficiency in Water Damage Restoration

Ask The Expert: Unlocking Efficiency in Water Damage Restoration

Ask The Expert: Catastrophe Panel – Back to the Basics Part 1

Ask The Expert: Catastrophe Panel – Back to the Basics Part 1

More Videos

Popular Stories

wall cavity drying

Dry or Demolish? Navigating the Complexities of Wall Cavity Restoration

Ask the Expert: Catastrophe Panel - Back to the Basics Part 1

Catastrophe Panel – Back to the Basics Part 1

IICRC

IICRC Honors Joe Dobbins, Welcomes Leslie Anderson as New President

R&R Ladder Award - Submit Your Nomination

Events

September 3, 2025

The Experience Convention and Trade Show

The Experience Convention & Trade Show logoJoin us in Las Vegas for The Experience Convention & Trade Show, the leading event for cleaning, restoration, and remediation pros, packed with hands-on demos, expert speakers, and high-impact networking. Happening September 3–5, 2025 at Caesars Forum—this is where the industry comes to learn, connect, and grow!

View All Submit An Event

Poll

Restoration Services

What restoration/remediation service do you prioritize most?
View Results Poll Archive

Products

The Cleaning, Restoration, Inspection, and Safety Glossary

The Cleaning, Restoration, Inspection, and Safety Glossary

The Cleaning, Restoration, Inspection, and Safety Glossary.

See More Products
Webinar - Top Legal Tools Every Restoration Contractor Should Understand
×

Stay ahead of the curve with our eNewsletters.

Get the latest industry updates tailored your way.

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
    • Submit a Press Release
  • SIGN UP TODAY
    • Create Account
    • eNewsletters
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Reprints
    • Marketing Services
    • Market Research
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing

Restoration logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Restoration logo
  • NEWS
  • PRODUCTS
    • New Products & Technologies
    • Submit Your Product
    • Interactive Product Spotlights
  • EDUCATION
    • KnowHow.
    • Podcasts
    • Trade Shows & Expos
    • Training & Certification
    • Webinars
    • Whitepapers
  • TOPICS
    • Water Damage
    • Fire & Smoke Damage
    • Mold
    • Contamination
    • Odor
    • Contents
    • Architecture
    • Catastrophe
    • Cleaning
  • BUSINESS
    • Managing Your Business
    • Insurance/Legal Matters
  • BUYER'S GUIDE
  • VIDEOS
    • Ask Annissa
    • Ask the Expert
    • Ironclad Marketing Minute
    • TradeTalks
    • Video Channel
  • INFOCENTER
    • Mold and Mycotoxins
  • THE EXPERIENCE
    • Conference & Exhibition
    • Convention & Trade Show
    • R&R Special Issue
  • EMAG
    • eMagazine
    • Archive Issues
    • Contact
    • Advertise
  • SIGN UP